Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review

Muhammad B. Asif, Ashley J. Ansari, Shiao Shing Chen, Long D. Nghiem, William E. Price, Faisal I. Hai

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

High retention membrane bioreactors (HR-MBR) combine a high retention membrane separation process such as membrane distillation, forward osmosis, or nanofiltration with a conventional activated sludge (CAS) process. Depending on the physicochemical properties of the trace organic contaminants (TrOCs) as well as the selected high retention membrane process, HR-MBR can achieve effective removal (80–99%) of a broad spectrum of TrOCs. An in-depth assessment of the available literature on HR-MBR performance suggests that compared to CAS and conventional MBRs (using micro- or ultra-filtration membrane), aqueous phase removal of TrOCs in HR-MBR is significantly better. Conceptually, longer retention time may significantly improve TrOC biodegradation, but there are insufficient data in the literature to evaluate the extent of TrOC biodegradation improvement by HR-MBR. The accumulation of hardly biodegradable TrOCs within the bioreactor of an HR-MBR system may complicate further treatment and beneficial reuse of sludge. In addition to TrOCs, accumulation of salts gradually increases the salinity in bioreactor and can adversely affect microbial activities. Strategies to mitigate these limitations are discussed. A qualitative framework is proposed to predict the contribution of the different key mechanisms of TrOC removal (i.e., membrane retention, biodegradation, and sorption) in HR-MBR.

Original languageEnglish
Pages (from-to)34085-34100
Number of pages16
JournalEnvironmental Science and Pollution Research
Volume26
Issue number33
DOIs
StatePublished - 1 Nov 2019

Bibliographical note

Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords

  • Forward osmosis (FO)
  • High retention membrane bioreactors
  • Membrane distillation (MD)
  • Nanofiltration (NF)
  • Predictive framework
  • Removal mechanisms
  • Trace organic contaminants

Fingerprint

Dive into the research topics of 'Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review'. Together they form a unique fingerprint.

Cite this