TY - JOUR
T1 - A novel self-buffering membrane distillation-based thermophilic anaerobic bioreactor
AU - Duong, Chinh Cong
AU - Chen, Shiao Shing
AU - Le, Huy Quang
AU - Chang, Hau Ming
AU - Nguyen, Nguyen Cong
AU - Cao, Dan Thanh Ngoc
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/11
Y1 - 2020/11
N2 - The stability of an anaerobic bioreactor is a function of alkalinity that provides buffer capacity to maintain a suitable pH for anaerobic microorganisms. The greatest advantage of membrane distillation (MD) is the high rejection of most solutes, including alkaline salt, and it has a high potential to retain alkalinity for the anaerobic system. For the first time, a thermophilic anaerobic granular bioreactor integrated with an MD membrane to maintain the buffered pH was studied in an anaerobic bioreactor without alkalinity supplement. This study presented a comparison between a conventional thermophilic anaerobic bioreactor (TAn1) and a thermophilic anaerobic bioreactor integrated with a MD (TAn2-MD). The two TAns (TAn1 and TAn2) were operated in the same conditions except there was no alkalinity feeding for the TAn2-MD. The results showed that the pH in the TAn2-MD unit was always higher than 6.8 with the organic loading rates from 6 to 18 kg COD/m3/day. However, to maintain the pH of the TAn1 unit at the same level as the TAn2-MD unit, the minimum alkalinity requirements for TAn1 were 1.5, 1.56, 1.62, and 1.8 g/L as CaCO3 at an organic loading rate of 6, 10, 14, and 18 kg COD/m3/day, respectively. Although there was no alkalinity supplement for the TAn2-MD system, two stability indexes, FOS/TAC (volatile organic acids to buffer capacity) and IA/PA (intermediate alkalinity to partial alkalinity), indicated the system was operated at a stable condition. In summary, the designed TAn2-MD can accomplish high-efficiency organic carbon removal (higher than 99.4%) without alkalinity supplement, achieve zero-liquid-discharge, and reclaim high-quality wastewater in one step.
AB - The stability of an anaerobic bioreactor is a function of alkalinity that provides buffer capacity to maintain a suitable pH for anaerobic microorganisms. The greatest advantage of membrane distillation (MD) is the high rejection of most solutes, including alkaline salt, and it has a high potential to retain alkalinity for the anaerobic system. For the first time, a thermophilic anaerobic granular bioreactor integrated with an MD membrane to maintain the buffered pH was studied in an anaerobic bioreactor without alkalinity supplement. This study presented a comparison between a conventional thermophilic anaerobic bioreactor (TAn1) and a thermophilic anaerobic bioreactor integrated with a MD (TAn2-MD). The two TAns (TAn1 and TAn2) were operated in the same conditions except there was no alkalinity feeding for the TAn2-MD. The results showed that the pH in the TAn2-MD unit was always higher than 6.8 with the organic loading rates from 6 to 18 kg COD/m3/day. However, to maintain the pH of the TAn1 unit at the same level as the TAn2-MD unit, the minimum alkalinity requirements for TAn1 were 1.5, 1.56, 1.62, and 1.8 g/L as CaCO3 at an organic loading rate of 6, 10, 14, and 18 kg COD/m3/day, respectively. Although there was no alkalinity supplement for the TAn2-MD system, two stability indexes, FOS/TAC (volatile organic acids to buffer capacity) and IA/PA (intermediate alkalinity to partial alkalinity), indicated the system was operated at a stable condition. In summary, the designed TAn2-MD can accomplish high-efficiency organic carbon removal (higher than 99.4%) without alkalinity supplement, achieve zero-liquid-discharge, and reclaim high-quality wastewater in one step.
KW - Alkalinity
KW - Membrane distillation
KW - Self-buffering
KW - Thermophilic anaerobic bioreactor
UR - http://www.scopus.com/inward/record.url?scp=85088942610&partnerID=8YFLogxK
U2 - 10.1016/j.eti.2020.101077
DO - 10.1016/j.eti.2020.101077
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85088942610
SN - 2352-1864
VL - 20
JO - Environmental Technology and Innovation
JF - Environmental Technology and Innovation
M1 - 101077
ER -